Langzeituntergründe in der Gammaspektroskopie Long-term background in gamma-spectroscopy D. Pittauerová, S. Ulbrich, B.Hettwig, H.W.Fischer

Tab. 4

Tab 5

Radioactivity Measurements Laboratory, Institute of Environmental Physics, University of Bremen, Germany

Introduction

Gamma spectroscopy is one of the methods used in the Radioactivity Measurements Laboratory at the University of Bremen for purposes of environmental radioactivity surveillance applied to variety of media (water, soil, biota, foodstuff, waste water, sludge, etc.) and for sediment geochronology. Activities of radionucidies in these kinds of samples are often near the limit of detection, therefore a proper estimation of detector background is essential.

Summing up the spectra

As a part of the measurement routine in the laboratory an up-to-date background for each detector has been collected approximately once in a month. In the individual background spectra, which are usually recorded for 3-4 days, only a limited amount of limes is visible. In this study for 3 gamma-ray coasial HP-Ge detectors the individual spectra were summed up using method based on procedure proposed by Bossew (2005) [1]. In these spectra many additional "exotic" lines, which are not detectable in the individual background spectra, are visible.

	Det 3	Det 5	Det 6	Tab 1.
Description	reverse p-type coaxial Ge detector, Canberra	n-type coaxial Ge detector, Canberra	n-type coaxial Ge detector, Canberra	Description of the
Size (diameter / length mm)	76 / 60,5	64/60	63,5 / 63,5	atudu
End- cap	Cu endcap with C epoxy window	Cu endcap with C epoxy window	Cu endcap with C epoxy window	Summing up data.
Relative efficiency (%)	51,2	50,8	50,9	
FWHM (122 keV / 1332 keV)	0,857/1,76	0,931 / 1,87	0,865 / 2,05	
Shielding	Pb: 92 mm Cu: 10 mm Cd: 1,3 mm PMMA: 5 mm	Pb: 92 mm Cu: 10 mm Cd: 1,3 mm PMMA: 5 mm	Pb: 100 mm Cu: 10 mm	
Number of summed-up spectra	29	43	46	
Time period	8/2005-12/2008	8/2004-12/2008	11/2004-12/2008	
Total summed-up time (days)	104,5	159,8	171,9	
Count rate 20-2040 keV (s ⁻¹)	1,35	1,28	1,30	

Gamma lines detected in summed up spectra The sources of the common and exotic lines in the background signal were identified [2] in summedspectra and can be divided into following groups:

Tab. 2

1. Radon and thoron progeny in the measurement chamber (Tab.2)

	Ennor		Det 3				Der 5		Dat 6				
Nuclide	(keV)	(56)	Energy (keV)	Count rate (s ⁻¹)	Rel. error 1 or (%)	Energy (keV)	Count rate (s ⁻¹)	Rel. error 1 σ (%)	Energy (keV)	Count rate (s ⁻¹)	Rel. error 1 σ (%)		
214Bi	609,3	46,1	609,2	0,9285	4,2	609,2	0,7718	2,6	609,1	1,9034	1,1		
	665,5	1,46	684,8	0,0590	22,3			-	665,3	0,0564	18,1		
	768,4	4,94	768,1	0,1118	12,0	768,6	0,0840	12,8	768,3	0,1657	6,4		
	934,1	3,03	\$34,0	0,0423	37,8	934,1	0,0156	68,1	234,0	0,0873	20,5		
	1120,3	15,1	1120,2	0,2402	5,2	1120,2	0,2212	4,6	1120,2	0,4527	2,3		
	1155,2	1,63	1155,0	0,0318	47,4			-	1155,0	0,0422	41,0		
	1238,1	5,79	1238,0	0,1422	15,7	1238,0	0,0872	25,7	1238,1	0,1809	0,9		
	1281,0	1,43	1280,4	0,0202	80,2	-		-	1280,9	0,0420	35,5		
	1377,7	4	1377,8	0,0986	22,2	1378,0	0,0764	10,1	1377,6	0,1392	11,3		
	1385,3	0,757	-		-	1385,3	0,0242	28,8	-				
	1401,5	1,27	1401,0	0,0405	23,5			-	1401,4	0,0430	16,6		
	1408,0	2,95	1408,2	0,0462	20,1	1407,6	0,0481	14,9	1407,8	0,0679	10,9		
	1509,2	2,11	1508,7	0,0233	78,1	1508,4	0,0557	13,4	1509,0	0,1045	8,2		
	1538,5	0,378	-		-	-			1538,6	0,0322	22,6		
	1661,3	1,15	1661,3	0,0460	39,8	1680,6	0,0154	66,2	1661,0	0,0218	25,1		
	1729,6	2,92	1729,6	0,0637	20,9	1729,3	0,0502	12,6	1729,7	0,1047	11,5		
	1764,5	15,4	1784,6	0,4210	4,6	1764,4	0,3439	5,4	1764,4	0,4807	12,4		
	1847,4	2,11	1847,5	0,0484	29,3	1847,0	0,0263	22,7	1847,4	0,0596	19,1		
214Pb	53,5"	1,2	53,5	0,3764	13,4				53,4	0,2877	12.1		
	242.0	7.43	242.0	0.2290	10.1	242.0	0.2772	8.6	242.0	0.5411	4.7		
	295,2	19,3	295,3	0,6464	20	295,3	0,6230	8,5	295,2	1,3315	3,3		
	351,9	37,6	351,9	1,1721	4.1	351,9	0,8964	2,5	351,9	2,3322	1,7		
	785,0	1,07	-		-	-		-	786,0	0,0760	30,4		
заьрр	235,6	43,3	238,7	0,1385	17,0	238,6	0,7238	3,9	238,7	0,2429	9,1		
208 TI	583,5	84,5	583,1	0,0844	16,3	583,3	0,2957	5,2	583,3	0,1150	12,2		
	1600.6		1600.0	0.1007	0.6	1600.6	0.0000	8.9	1600.0	0.0858	10.0		

Summed-up spectra

	~											
je je				ĪĪ			Y	L			1	
1e-4 -	Def 3 Def 5 Def 6	 $\left \right $	1	Ħ	t	 			T	1	Η	

Fig. 1: Comparison of summed up spectra for all 3 detectors (energy region 20-2000 keV, log/log scale).

Summed up spectra (Fig.1) together with differential spectra of the 3 detectors (Fig. 2) and the tables of values (Tab. 2-5) show main differences between the 3 detectors:

 The continuum: 20-170 keV Det3>Det5>Det6; 170-350 keV Det6>Det3 ≡ Det5; 350-400 keV Det6=Det3>Det5; 400-1500 keV Det3>Det6>Det5 keV and 1500-2000 keV Det3>Det6=Det5 (due to different efficiencies of the detectors for different energies)

Rn daughters (²¹⁴Pb, ²¹⁴B): Det6>>Det3>Det5 (Det6 Pb housing has the highest inner volume)
²¹⁹Pb: Det5>Det5>Det6>Det3 (due to construction material of the detector, therefore Det3 can be used for sediment ²¹⁰Pb chronology)

• 226Ra, 234Th, 238mPa, 235U: Det3>Det5≡Det6; Th series (228Ac): Det5>Det6>Det3

⁴⁰K·Det3>Det3>Det5

Artificial isotopes (¹³⁷Cs,⁶⁰Co): Det5≥Det6>Det3

• X-rays (Pb): Det6>Det3>Det5 (housing of the Det6 does not have Cd and PMMA inner layers)

114mCd: Det3>Det5>Det6 (housing of the Det6 does not contain Cd inner layer)

Universität Bremen

primordial ¹⁰K 1460,8 11 1460,8 2,6333 1460,7 1460,8 2010 series 46,5 4,25 186,2° 3,59 43,3 4,8 231 29,5 16,6 14,6 63,3 4,8 92,4 / 2,81 / 92,8 2,77 92,7 0,3492 35,2 93,0 1001 4044 ²⁰¹U series 143,8 10,96 143,5 0,0839 186,7° 57,2 185,9 0,3963 35,8 16,6 185,7* ²⁵⁰Th series 338,3 11,27 911,2 25,8 969 15,8 ***? 3,22 0,1924 15,5 337,5 911,3 969,6 1588,1 37,1 53,7 27,3 15,5 911,2 0,1638 7,0 4,3 911,5 968,6 0,1043 20,3 artificial ¹⁰Co 1173,2 500 1172,9 1332,5 500 1331,9 ¹³³Ca 861,7 85,1 861,7 ¹³³Cherrie Insa of ²³⁹Ka and ²³⁹U 40,6 1173,1 36,8 1332,4 13.2 661,6 0.0526 0,0223 0,0458 16,2 3. Short-lived activation products formed by reaction of cosmic radiation induced

pip

neutrons with material of the detector itself, its accessories and the shielding (Tab. 4)

Nuclide	(keV)	Asaction	Energy (keV)	Count rate	Rel. error 1 a (%)	Energy (keV)	Count rate	Rel. error 1 σ (%)	Energy (keV)	Count rate	Rel. error 1 σ (%)
	Ge										
71nGe	23,4	Reals of The Ga				23,9	0,3615	10,6	24,1	0,6038	5,9
	198,3 *	"Ge(n,2n)""Ge	198,3	0,5518	6,5	198,1	0,6245	5,3	198,3	0,4549	5,6
77 Ge	691+**	"Gain.n)" Ge	694,0	1,1978	4,8	694	1,1913	37	6294	1,4401	2,0
TT Ge	68,7+ "	²³ Gein,n') ⁷³ Ge	70,0	0,0898	24,8						
73nGe	53,5 ***	⁷² Gein st ⁷³ "Ge	53,5	0,3764	13,4			-	53,4	0,2877	12,1
	66,5 ****	⁷⁴ Ge(n,2n) ^{70m} Ge	66,3	0,4531	6,4	66,3	0,4705	7,1	66,3	0,2550	14,9
™Ge	595,9+ "	"Gain,n")" Ge	594,5	1,7370	5,2	594,5	1,7324	4,0	594,5	1,9599	2,5
N=Ge	139,5	"Ge(n, y Ge, "Ge(n,2n)""Ge	139,8	0,3527	10, 1	139,7	0,4574	58,5	139,8	0,3127	19,3
27mGe	159,5	"Ge/n, x ²⁷ Ge	159,3	0,2503	27,9	159,2	0,2245	18,7	159,5	0,1315	42,1
	Cd	too loo loo loo lo		ine ine ine i							
PO_FC9	651		651,5	0,0945	29,9		-	-		-	
	805,7	"Cdin, yf ""Cd			-	806	0.0374	28,2	805,2	0,0354	26.9
	558,3		558,4	0,5761	7,1	558,4	0,3292	6,3		-	
	Pb										
Pb	803,1	Pb(n,n) ²⁴ Pb	803,0	0,1740	16,0	803	0,0982	13,0	803	0,1287	8,8
Pb	569,7	Pb(n,n) Pb	509,6	0,0493	27,9	-			559,7	0,1057	27,3
	Cu										
a Cu	659,6		669,8	0,3110	5,2	662,5	0,3189	41	659,8	0,3925	2,4
	962,1		962,1	0,4353	3,5	952,2	0,4559	1,3	962,2	0,5529	2,1
	1327	⁶⁰ Cu(n,n) ⁶⁷ Cu	1326,9	0,1034	9,5	1327	0,1463	6,2	1326,9	0,1544	5,7
	1412,1		1412,2	0,0592	14,6	1412,2	0,0705	10,8	1412,3	0,0785	9,5
	1547								1546,9	0,0626	13,2
er Cu	278,3	"Cuin of Cu	278,3	0,1751	29,5	278,1	0,3123	17,0	278,1	0,2770	16,8
"Cu	770,8	"Cu(n,n)" Cu	770,6	0,1154	11,8	770,7	0,1182	10,1	770,8	0,1162	8,5
"Cu,	1115,5	"Gu(n,n)" Cu, "Ge(n,2no)" Zn	1115,6	0,1569	7,3	1115,6	0,1515	6,2	1115,5	0,1980	44
"Cu	1401.7	"Cuin n" Cu	1401.0	0.0456	35.2	1401.6	0.0403	29.0	1412	0.0450	25.7

4. Other: annihilation peak, X-rays and non-identified lines (Tab. 5)

Det 5 Det 6 Det 3

Det

Line												
	(keV)	Energy (keV)	Count rate (a ⁻⁷)	Rel. error 1 σ (%)	Energy (keV)	Count rate (#1)	Rel. error 1 or (%)	Energy (ksV)	Count rate (x ⁻¹)	Rel. error 1 σ (%)		
6+ -8-	511	511,0	20,1171	63	511	18,0024	0,3	510,9	21,3373	0,2		
X-ra	iya											
Bi Ka1	77,1	77,2	0,2489	10,6				77,1	0,3961	5,5		
Bi Kn2	74,8	74,7	0,1843	13,6			-	74,9	0,2058	2,3		
Bi KßZ	89,5							87,0	0,0541	47,9		
unider	tified											
7	203	203,0	0,2128	14,4	203,1	0,2110	13,5	203	0,1024	18,8		
?	725,7	725,7	0,0551	25,2			-					
?	8229	899,2	0,0760	34,1	895,5	0,0593	14,3	8,825	0,0925	23,0		
7	979			-	979,7	0,0174	21,9					
?	1163	1163,0	0,0895	24,0	1163,5	0,0203	37,0					
?	1345			-	1345,3	0,0365	19,9					
?	1514		-	-	1514	0,0490	14,8	1514	0,0551	11,9		

Time series

Variability of selected peaks in the background Variability of selected peaks in the background spectra is significant mainly for the Rn progeny. In the early part of the time period under consideration a household foil was used to protect the detector cups, but proyed to be unsuitable due to increasing the Rn progeny background caused by their electrostatic attachment onto the foil surface. The foil was removed in January 2006.

Fig. 3: Time series of selected nuclides

⁴Pb - 352 ke¹

The descriptive statistics of the time series (selected lines, after January 2006) is given in the Tab. 6. Rn progeny show high variation, as well as 210 Pb and 137 Cs (with low count rates).

		n	Median (cps *10 ³)	Minimum (cps *10 ³)	Maximum (cps *10 ³)	Arit. mean (cps *10 ³)	Std. deviation (cps *10 ³)	Coef. of variation (%)
210	Det 3	29	0,424	-0,148	0,753	0,35	0,207	59,2
AC E hell	Det 5	35	0.663	-0,669	1,25	0,533	0,455	85,5
40,5 KBV	Det 6	37	0,454	-0,099	1,036	0,481	0,229	47,6
214-01	Det 3	29	0,532	0,532	2,825	1,24	0,537	43,3
252 hell	Det 5	35	0,953	0,135	2,097	0,909	0,399	43,9
332 KHV	Det 6	37	1,818	0,235	3,184	1,921	0,641	33,4
Applihilation	Det 3	29	19,5	19,2	20,9	20,1	0,5	2,4
511 keV	Det 5	35	17,9	15,2	18,8	17,7	1,0	5,8
	Det 6	37	21,3	18,2	22,7	21,3	0,8	3,6
40	Det 3	29	2,78	2,33	3,24	2,649	0,182	6,9
ACO R hell	Det 5	35	1,964	1,713	2,262	1,988	0,146	7,3
400,0 KEV	Det 6	37	2,067	1,218	2,049	2,045	0,185	9,0
13700	Det 3	29	0,29	-0,158	0,29	0,052	0,121	232,5
CC2 hell	Det 5	35	0,179	-0,123	0,359	0,177	0,112	63,4
002 KBV	Det 6	37	0.065	-0,088	0,367	0,098	0,122	124,8
214p:	Det 3	29	0,493	0,271	0,648	0,415	0,095	23
1762 keV/	Det 5	35	0,311	0,117	0,545	0,311	0,085	27,4
1703 KEV	Det 6	37	0,424	0,124	0,711	0,434	0,120	27,7

At the moment the authors consider implementation of the results obtained by this study to day to day laboratory practice to improve the quality management.

REFERENCES:

Tab. 6:

 Bossew P. (2005): A very long-term HPGe-background gamma spectrum. Appl. Radiat. Isot., 62(4):635-44.
Chu S.Y.F., Ekström L.P. and Firestone R.B., WWW Table of Radioactive Isotopes, database version 2/28/1999. http://nicleardiata.nuclear/u.aea/in/cacessed1an.- Fob. 2009

Landesmessstelle für Radioaktivität